

November 18, 2022

Madison Johnson Seaborn Pile Driving 1080 West Ewing Street Seattle, Washington 98119

RE: Rockery Recommendations Helms Residence 7234 West Ridge Road Mercer Island, Washington 98040 RGI Project No. 2022-631-1

Dear Ms. Johnson:

The Riley Group, Inc. (RGI) is pleased to present our recommendations for constructing a new rockery at the above-referenced site. On November 9, 2022, RGI observed the site condition and performed subsurface exploration by advancing three borings using a hand auger in the proposed rockery area. The boring locations are shown on Figure 2. The following presents our findings of the soil conditions and recommendations for the proposed project.

PROJECT DESCRIPTION

RGI understands that the owner plans to remove 51 feet of existing rockery and build a new rockery about 63 feet long and 8 to 12 feet tall. The new rockery will be 13 feet to the east of the existing rockery. A geotechnical engineering report (GER) will be needed for the project. Our understanding of the project is based on site plans prepared by Seaborn Pile Driving dated September 23, 2022.

An RGI geologist visited the site on November 9, 2022 and observed the existing shoreline condition. Based on our observations, the project is feasible from a geotechnical standpoint.

SOIL AND GROUNDWATER CONDITION

The soils encountered during field exploration include up to 3.5 feet of fill comprised of loose to medium dense silty sand with some gravel and silty sand over native deposits of loose to medium dense sand with some silt and gravel, gravelly sand with some silt, and silty sand with trace gravel, and stiff silt with some sand.

Groundwater was not encountered to the maximum exploration depth of seven feet below ground surface. More detailed descriptions of the subsurface conditions encountered are presented in the attached logs. Sieve analysis was performed on three selected soil samples. The grain size distribution curve are included.

GEOTECHNICAL RECOMMENDATIONS

Rockery

A rockery is not intended to function as an engineered structure to resist lateral earth pressures as a retaining wall. The primary function of a rockery is to provide stability and erosion control. The amount of support obtained will depend on a large extent on the quality of the workmanship,

> Corporate Office 17522 Bothell Way Northeast Bothell, Washington 98011 Phone 425.415.0551 ♦ Fax 425.415.0311

> > www.riley-group.com

size, shape of the rocks used, and drainage behind it. A critical factor in rockery construction is the quality of the rock material used. Rock for use in rockery should be cubical, rectangular, or tubular in shape with the longest dimension not exceeding three times the width. The rocks recycled from existing rockery may be used if meeting the requirement. Additional rocks may need to be imported. The rock bulkhead should be constructed by an experienced rockery contractor in accordance with Associated Rockery Contractors (ARC) guidelines.

We recommended that limiting the rockery height to 12 feet placed along the native medium dense soil. RGI recommends that the rockery construction be performed in sections no more 25 feet each time. The excavation, rockery installation, and backfill should be performed within the same day. A general rockery section detail is included on Figure 3.

The following sections of the report provide general recommendations related to erosion and sediment control, excavations, structural fill, and backfill compaction.

Erosion and Sediment Control

Potential sources or causes of erosion and sedimentation depend on construction methods, slope length and gradient, amount of soil exposed and/or disturbed, soil type, construction sequencing and weather. The impacts on erosion-prone areas can be reduced by implementing an erosion and sedimentation control plan. The plan should be designed in accordance with applicable city and/or county standards.

RGI recommends the following erosion control Best Management Practices (BMPs):

- Scheduling site preparation and grading for the drier summer and early fall months and undertaking activities that expose soil during periods of little or no rainfall
- Establishing a quarry spall construction entrance
- Installing siltation control fencing or anchored straw or coir wattles on the downhill side of work areas
- Covering soil stockpiles with anchored plastic sheeting
- Revegetating or mulching exposed soils with a minimum 3-inch thickness of straw if surfaces will be left undisturbed for more than one day during wet weather or one week in dry weather
- Directing runoff away from exposed soils and slopes
- Minimizing the length and steepness of slopes with exposed soils and cover excavation surfaces with anchored plastic sheeting (Graded and disturbed slopes should be tracked in place with the equipment running perpendicular to the slope contours so that the track marks provide a texture to help resist erosion and channeling. Some sloughing and raveling of slopes with exposed or disturbed soil should be expected.)
- > Decreasing runoff velocities with check dams, straw bales or coir wattles
- Confining sediment to the project site
- Inspecting and maintaining erosion and sediment control measures frequently (The contractor should be aware that inspection and maintenance of erosion control BMPs is critical toward their satisfactory performance. Repair and/or replacement of dysfunctional erosion control elements should be anticipated.)

Permanent erosion protection should be provided by reestablishing vegetation using hydroseeding and/or landscape planting. Until the permanent erosion protection is established, site monitoring should be performed by qualified personnel to evaluate the effectiveness of the erosion control measures. Provisions for modifications to the erosion control system based on monitoring observations should be included in the erosion and sedimentation control plan.

Excavations

All temporary cut slopes associated with the site and utility excavations should be adequately inclined to prevent sloughing and collapse. Based on OSHA regulations, the native soil classifies as a Group B soil. Accordingly, for excavations more than 4 feet but less than 20 feet in depth, the temporary side slopes should be laid back with a minimum slope inclination of 1-1/2H:1V (Horizontal:Vertical).

In all cases, however, appropriate inclinations will depend on the actual soil and groundwater conditions encountered during earthwork. Ultimately, the site contractor must be responsible for maintaining safe excavation slopes that comply with applicable OSHA or WISHA guidelines.

Structural Fill

The native soil encountered is suitable for re-use as structural fill if the moisture can be property controlled. If the construction occurs in wet weather, RGI recommends import structural fill be used for all grading and backfill. The import material must meet the grading requirements listed in Table 1 in order to be used as structural fill.

U.S. Sieve Size	Percent Passing
3 inches	100
No. 4 sieve	75 percent
No. 200 sieve	5 percent *

Table 1 Structural Fill Gradation

*Based on minus 3/4 inch fraction.

Prior to use, an RGI representative should observe and test all materials imported to the site for use as structural fill. Structural fill materials should be placed in uniform loose layers not exceeding 12 inches and compacted as specified in Table 1. The soil's maximum density and optimum moisture should be determined by American Society of Testing and Materials D1557-09 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (ASTM D1557).

Location	Material Type	Minimum Compaction Percentage	Moisture Content Range		
Foundations	On-site granular or approved imported fill soils:	95	+2	-2	
Retaining Wall Backfill	On-site granular or approved imported fill soils:	92	+2	-2	

Table 2 Structural Fill Compaction ASTM D1557

Placement and compaction of structural fill should be observed by RGI. A representative number of in-place density tests should be performed as the fill is being placed to confirm that the recommended level of compaction is achieved.

ADDITIONAL SERVICES

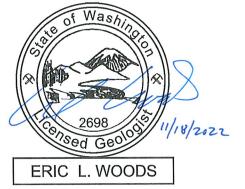
RGI is available to provide further geotechnical consultation throughout the design phase of the project. RGI should review the final design and specifications in order to verify that earthwork and foundation recommendations have been properly interpreted and incorporated into project design and construction.

RGI is also available to provide geotechnical engineering and construction monitoring services during construction. The integrity of the earthwork and construction depends on proper site preparation and procedures. In addition, engineering decisions may arise in the field in the event that variations in subsurface conditions become apparent. Construction monitoring services are not part of this scope of work. If these services are desired, please let us know and we will prepare a cost proposal.

LIMITATIONS

This letter is the property of RGI, Seaborn Pile Driving, and its designated agents. Within the limits of the scope and budget, this letter was prepared in accordance with generally accepted geotechnical engineering practices in the area at the time this letter was issued. This letter is intended for specific application to the Helms Residence project in Mercer Island, Washington, and for the exclusive use of Seaborn Pile Driving and its authorized representatives. No other warranty, expressed or implied, is made. Site safety, excavation support, and dewatering requirements are the responsibility of others.

The scope of services for this project does not include either specifically or by implication any environmental or biological (for example, mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, we can provide a proposal for these services.

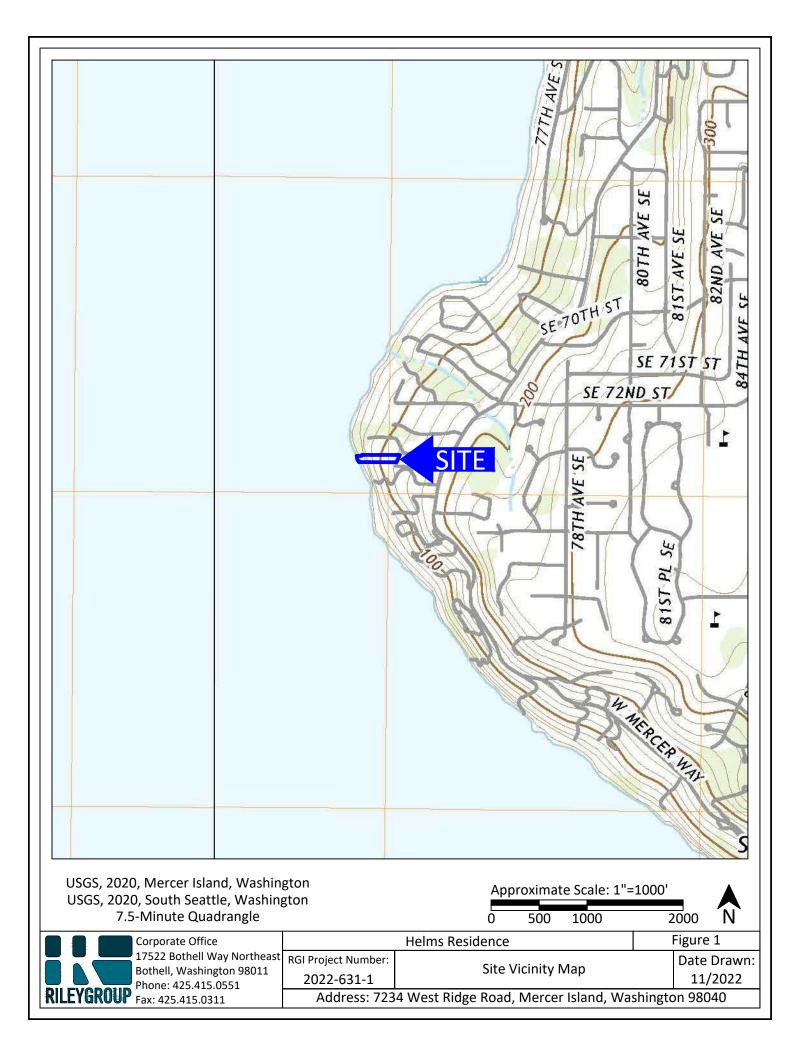

The analyses and recommendations presented in this letter are based upon data obtained from reviewing the explorations completed by others on the site. Variations in soil conditions can occur, the nature and extent of which may not become evident until construction. If variations appear evident, RGI should be requested to reevaluate the recommendations in this letter prior to proceeding with construction.

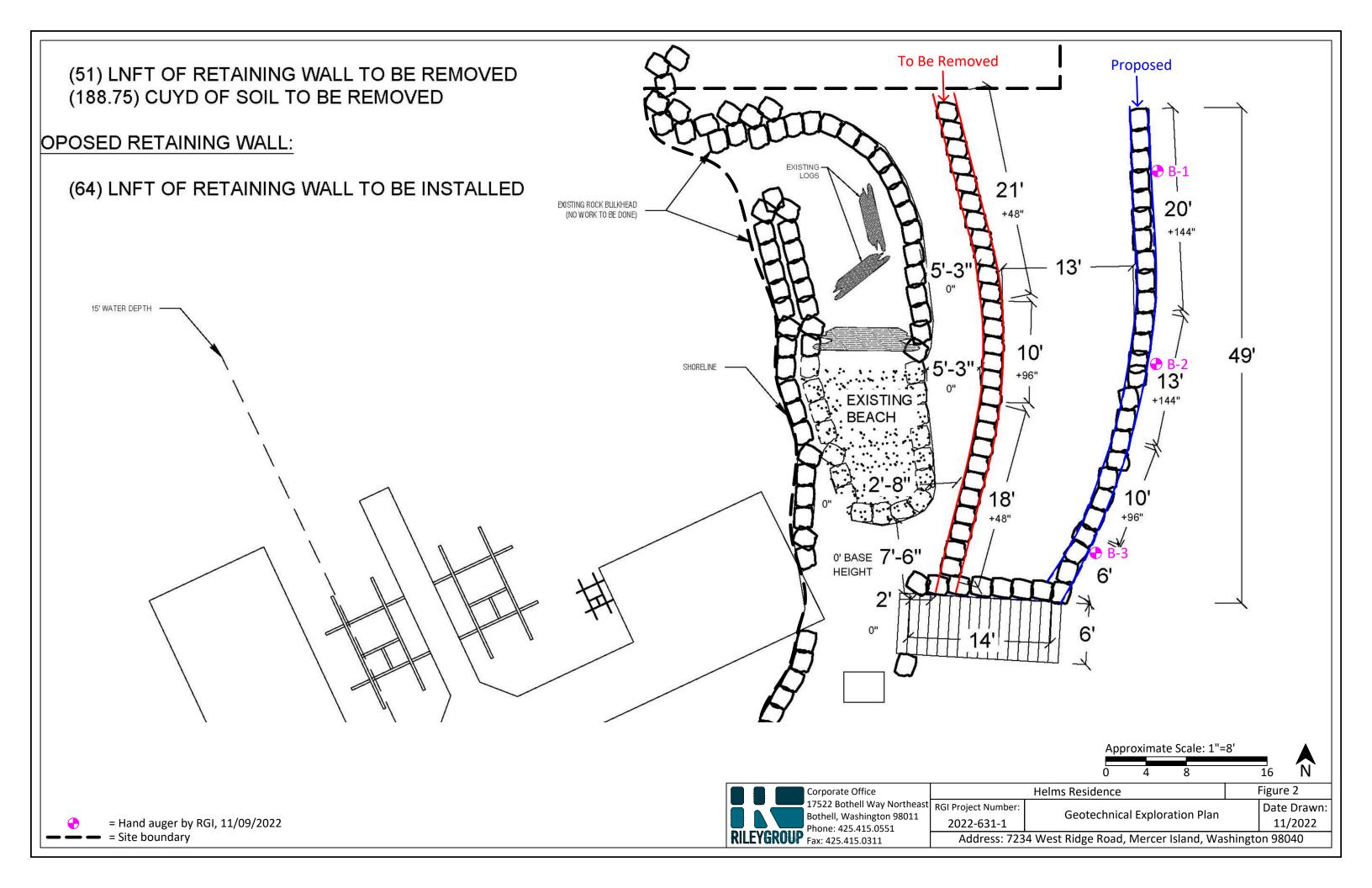
We trust the information presented is sufficient for your current needs. If you have any questions regarding this letter report or require additional information, please call us at (425) 415-0551.

Sincerely yours,

THE RILEY GROUP, INC.

Eric L. Woods, LG Project Geologist




Ricky R. Wang, PhD, PE Principal Engineer

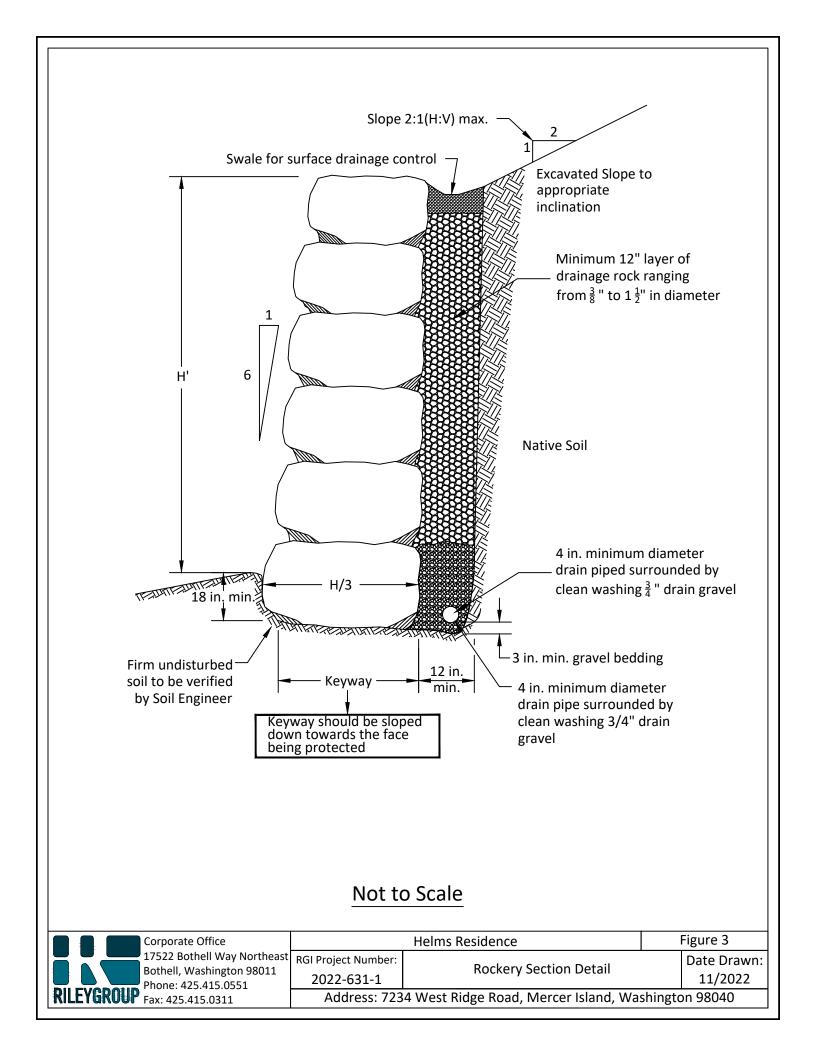

Attachments:

Figure 1 Site Vicinity MapFigure 2 Geotechnical Exploration PlanFigure 3 Typical Rockery SectionHand Auger Boring Logs and Grainsize Analysis

Project Number: 2022-631-1 Client: Seaborn Pile Driving

Hand Auger No.: HA-1 Sheet 1 of 1

Date(s) Drilled: 11/9/2022	Logged By: ELW	Surface Conditions: Grass
Drilling Method(s): Hand Auger	Drill Bit Size/Type: 2.25"	Total Depth of Borehole: 2 feet bgs
Drill Rig Type: N/A	Drilling Contractor: N/A	Approximate Surface Elevation: N/A
Groundwater Level: Not Encountered	Sampling Method(s): Auger	Hammer Data : N/A
Borehole Backfill: Cuttings	Location: 7234 West Ridge Road, Mercer Islan	d, Washington

Elevation (feet) Depth (feet) Sample Type Sample ID Sample ID Sampling Resistance, Craphic Log Graphic Log	Moisture (%)
0 TPSL m m 4" topsoil	
Fill SAND with some gravel, loose to medium dense, dry to moist (Fill)	
	5
2 Hand auger terminated at 2 feet due to cobbles	

Project Number: 2022-631-1 Client: Seaborn Pile Driving

Hand Auger No.: HA-2 Sheet 1 of 1

		-			
Date(s) Drilled: 11/9/2022		Lo	gged By: ELW	Surface Conditions: Grass	
Drilling Method(s): Hand Au	ıger	Dri	II Bit Size/Type: 2.25"	Total Depth of Borehole: 7 feet bgs	
Drill Rig Type: N/A		Dri	lling Contractor: N/A	Approximate Surface Elevation: N/A	
Groundwater Level: Not En	countered	Sa	mpling Method(s): Auger	Hammer Data : N/A	
Borehole Backfill: Cuttings		Lo	cation: 7234 West Ridge Road, Mercer Islan	d, Washington	
Elevation (feet)	Sampling Resistance, Sampling Resistance, Label 1 Sampling Resistance, Label 1 Sampling Resistance, ML SMbol DISCS Symbol		MATERIAL DESCI 4* topsoil Brown silty SAND with some gravel, loose to me Reddish brown SAND with some silt and gravel, 9% fines Becomes gray, moist to wet Gray mottled SILT with some sand, stiff, moist 80% fines Gray gravelly SAND with some silt, medium dens Hand Auger terminated at 7'	dium dense, moist (Fill)	(%) Moisture (%) 11

Project Number: 2022-631-1 Client: Seaborn Pile Driving

3

5

6

Hand Auger No.: HA-3 Sheet 1 of 1

21

Date(s) Drilled: 11/9/2022							Log	ged By: ELW Su	Surface Conditions: Grass			
Drilling Method(s): Hand Auger							Dril	Bit Size/Type: 2.25 " To	otal Depth of Borehole: 4 feet bgs			
Drill Rig Ty	ype: N/A	4					Drilling Contractor: N/A Approximate Surface Elevation: N/A					
Groundwa	ater Level	: No	ot End	counter	red		Sampling Method(s): Auger Hammer Data : N/A					
Borehole E	Backfill:	Cutt	ings				Loc	ation: 7234 West Ridge Road, Mercer Island, N	Washington			
Elevation (feet)	o Depth (feet)	Sample Type	Sample ID	Sampling Resistance, blows/ft	Recovery (%)		Graphic Log	MATERIAL DESCRIPTION				
- - - - - - - -	1-					Fill		 Brown silty SAND, loose, moist (Fill) 	- - - - - - - - - - - - - - - - - - -			

-Becomes gray, loose to medium dense, wet

Hand Auger terminated at 4 feet due to rock obstruction.

The Riley Group, Inc. 17522 Bothell Way NE, Bothell, WA 98011

Project Number: 2022-631-1

Client: Seaborn Pile Driving

Elevation (feet)	Depth (feet)	Sample Type	Sample ID	Sampling Resistance, blows/ft	Recovery (%)	USCS Symbol	Graphic Log	MATERIAL DESC	CRIPTION	Moisture (%)			
1	2	3	4	5	6	7	8	9 10					
COLUM	N DESC	CRII	PTION	<u>15</u>									
 2 Dep 3 Sam show 4 Sam 5 Sam sam 	th (feet) ple Typ wn. ple ID: pling Re pler one	: De e: T San esis e foc	epth in ype o nple id tance ot (or o	feet be f soil sa lentifica , blows/ distance	ition nur ft: Numł	groun ollected nber. per of) beyo	d at blow	rface. the depth interval ts to advance driven eating interval	e Recovery Percentage is determine of core sample recovered compare h. CS symbol of the subsurface materia nic depiction of the subsurface material RIPTION: Description of material end tency, moisture, color, and other de ture, expressed as a water content.	d to the al. rial countered.			
FIELD A	ND LA	BOI	RATO	RY TE	ST ABB	REVI	ΑΤΙΟ	<u>DNS</u>					
CHEM: COMP: CONS: LL: Liqu	Compac One-dim	ctior nens	n test sional					UC: Unconfined comp	rcent ercent passing No. 200 Sieve) ressive strength test, Qu, in ksf ent passing No. 200 Sieve)				
MATER	IAL GR	APH		YMBOL	<u>.s</u>								
	AF SILT, SIL	_T v	v/SAN	ID, SAN	IDY SIL	T (ML))	Silty SAND (SM	l) SAND with Silt (SP-SM)				
TYPICA	L SAMI	PLE	R GR	APHIC	SYMBO	DLS			OTHER GRAPHIC SYMBOLS				
Bulk	er sample Sample h-OD C s rings	•	ornia v		Grab	Samp Samp och-OE ornia w	ole D Mo	Pitcher Sample Pitcher Sample 2-inch-OD unlined split spoon (SPT) Shelby Tube (Thin-walled, fixed head)	□ Ξ Water level (at time of drilling, ATE □ Ξ Water level (after waiting) □ ↓ Minor change in material propertie stratum □ − Inferred/gradational contact between strata	s within a			

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

			N SIZE ANAI				
		ASTM D421, D4	22, D1140,	D2487, D6	913		
PROJECT TITLE	Helms Residence			SAM	PLE ID/TYPE	HA-2	
PROJECT NO.	2022-631-1			-	APLE DEPTH		4'
ECH/TEST DATE	CM 11/15	/2022		DA	TE RECEIVED	11/	9/2022
WATER CONTENT (Del			Total Weight	Of Sample Use	ed For Sieve Cor		groscopic Moisture
Wt Wet Soil & Tare (gr		(w1) 483.6	_		Weight Of Sa		436.4
Wt Dry Soil & Tare (gm)	(w2) 436.4			Tare Weight		15.9
Weight of Tare (gm)		(w3) <u>15.9</u>		(W6)	Total Dry Wei	ight (gm)	420.5
Weight of Water (gm)	(w4=v	v1-w2) 47.2		SIEVE ANAL	<u>(SIS</u>		
Weight of Dry Soil (gm)) (w5=v	v2-w3) 420.5			<u>Cumulative</u>		
Moisture Content (%)	(w4/w	5)*100 11	Wt Ret	(Wt-Tare)	(%Retained)	<u>% PASS</u>	
			+Tare		{(wt ret/w6)*100}	<u>(100-%ret)</u>	
% COBBLES	0.0	12.0"	15.9	0.00	0.00	100.00	cobbles
% C GRAVEL	2.4	3.0"	15.9	0.00	0.00	100.00	coarse gravel
% F GRAVEL	23.0	2.5"					coarse gravel
% C SAND	4.6	2.0"					coarse gravel
% M SAND	17.2	1.5"		0.00	0.00	100.00	coarse gravel
% F SAND	44.3	1.0"					coarse gravel
% FINES	8.5	0.75"		10.30	2.45	97.55	fine gravel
% TOTAL	100.0	0.50"					fine gravel
		0.375"		74.30	17.67	82.33	fine gravel
D10 (mm)	0.09	#4		107.10	25.47	74.53	coarse sand
D30 (mm)	0.23	#10		126.30	30.04	69.96	medium sand
D60 (mm)	0.8	#20	-				medium sand
Cu	8.9	#40		198.60	47.23	52.77	fine sand
Cc	0.7	#60					fine sand
		#100		357.20	84.95	15.05	fine sand
		#200		384.80	91.51	8.49	fines
		PAN	436.4	420.50	100.00	0.00	silt/clay
% 100	12" 3" 2" 1	.75" .375" #4	#10 #20 :	#40 #60 #100	#200		
90 +++++							
P 70							
A 60							
s 50							
s 40							
30				$+ \times$			
N 10							
$\begin{array}{ccc} N & 10 \\ G & 0 \end{array}$							
1000	100	10	1	0	.1	0.01	0.001
		Grai	n size in millime	eters			
DESCRIPTION	SAND with some silt a	and gravel					
USCS	SP-SM						
repared For: eaborn Pile Driving		Reviewed By: ELW					

		ACTR		I SIZE ANAI		012		
		ASTIV	1 0421, 04	22, D1140,	D2487, D6	913		
PROJECT TITLE	Helms Resider	nce			SAM	PLE ID/TYPE	HA-2	
PROJECT NO.	2022-631-1				-	APLE DEPTH		5'
ECH/TEST DATE	СМ	11/15/2022			DA	TE RECEIVED	11/	9/2022
WATER CONTENT (De	elivered Moistur			Total Weight	Of Sample Use	ed For Sieve Cor		groscopic Moisture
Wt Wet Soil & Tare (g		(w1)	446.2			Weight Of Sa	mple (gm)	368.3
Wt Dry Soil & Tare (gi		(w2)	368.3			Tare Weight		16.0
Weight of Tare (gm)		(w3)	16.0		(W6)	Total Dry Wei		352.3
Weight of Water (gm)	(w4=w1-w2)	77.9		SIEVE ANALY	<u>(SIS</u>		
Weight of Dry Soil (gr	n)	(w5=w2-w3)	352.3			<u>Cumulative</u>		
Moisture Content (%)		(w4/w5)*100	22	<u>Wt Ret</u>	(Wt-Tare)	(%Retained)	<u>% PASS</u>	
· ·		•		+Tare		{(wt ret/w6)*100}	(100-%ret)	
% COBBLES	0.0		12.0"	16.0	0.00	0.00	100.00	cobbles
% C GRAVEL	0.0		3.0"	16.0	0.00	0.00	100.00	coarse gravel
% F GRAVEL	0.6		2.5"					coarse gravel
% C SAND	1.5		2.0"					coarse gravel
% M SAND	5.2		1.5"	16.0	0.00	0.00	100.00	coarse gravel
% F SAND	13.0		1.0"					coarse gravel
% FINES	79.8		0.75"	16.0	0.00	0.00	100.00	fine gravel
% TOTAL	100.0		0.50"					fine gravel
			0.375"	16.0	0.00	0.00	100.00	fine gravel
D10 (mm)			#4	18.1	2.10	0.60	99.40	coarse sand
D30 (mm)			#10	23.3	7.30	2.07	97.93	medium sand
D60 (mm)			#20					medium sand
Cu			#40	41.5	25.50	7.24	92.76	fine sand
Cc			#60					fine sand
			#100		58.10	16.49	83.51	fine sand
			#200		71.30	20.24	79.76	fines
			PAN	368.3	352.30	100.00	0.00	silt/clay
~ 100 -	12" 3"	2" 1".75" .	375" #4	#10 #20	#40 #60 #100	#200		-
% 90 								+
80						┽┥┼┼┼┼┼		+
P 70								+ + - 1
A 60								
40								
S 30								
N 10								
G 0 1000	100		10	1	0.	.1	0.01	0.001
			Grair	n size in millim	eters			
_			0.01					
DESCRIPTION	SILT with some	e sand						
USCS	ML				l			
epared For: aborn Pile Driving			Reviewed By: ELW					

elms Residence 2022-631-1 CM 11/15/2022 ered Moisture) (w1)	// D421, D4	22, D1140,	SAMI		HA-3	
2022-631-1 CM 11/15/2022 ered Moisture) (w1)				PLE ID/TYPE	НА-3	1
2022-631-1 CM 11/15/2022 ered Moisture) (w1)						1 1
CM 11/15/2022 ered Moisture) (w1)			SAN	APLE DEPTH		1.5'
ered Moisture) (w1)				TE RECEIVED		9/2022
(w1)		Total Weight		_		groscopic Moisture
	286.7	<u> </u>	0.000.000	Weight Of Sa		254.3
(w2)	254.3			Tare Weight		16.2
(w2) (w3)	16.2		(\\/6)	Total Dry Wei		238.1
(w4=w1-w2)	32.4			,	8 (8)	200.1
(w5=w2-w3)	238.1		<u>01272744742</u>	<u>Cumulative</u>		
(w3=w2 w3) (w4/w5)*100	14	Wt Ret	(Wt-Tare)	<u>(%Retained)</u>	<u>% PASS</u>	
(₩4/₩3/ 100	14	+Tare		{(wt ret/w6)*100}	<u>//1/ASS</u> (100-%ret)	
0.0	12 O"		0.00	1		cobbles
	-					coarse gravel
		10.2	0.00	0.00	100.00	coarse gravel
						coarse gravel
		16.2	0.00	0.00	100.00	coarse gravel
		10.2	0.00	0.00	100.00	-
		16.2	0.00	0.00	100.00	coarse gravel fine gravel
		10.2	0.00	0.00	100.00	fine gravel
100.0		24 5	° 20	2.40	06 51	-
						fine gravel
						coarse sand
		65.0	48.80	20.50	79.50	medium sand
				07.04		medium sand
			88.90	37.34	62.66	fine sand
			100 50	67.44		fine sand
						fine sand
						fines
	PAN	254.3	238.10	100.00	0.00	silt/clay
3" 2" 1".75"	.375" #4	#10 #20 #	#40 #60 #100	#200		1
						+
			•			
						+
100	10	1	0.	1	0.01	0.001
	Grair	n size in millime	eters			
ilty SAND with trace group						
with trace graver						
SM						
	Reviewed By:					
	100	0.0 3.0" 12.3 2.5" 8.1 2.0" 16.8 1.5" 38.4 1.0" 24.2 0.75" 100.0 0.50" 0.375" #4 #10 #20 #40 #60 #100 #200 PAN 3" 2" 1".75" .375" .44 0.50" 0.50" 0.50" 0.50" .100 10 .100 10 .100 10	0.0 12.0" 16.2 0.0 3.0" 16.2 12.3 2.5" 2.5" 8.1 1.5" 16.2 16.8 1.5" 16.2 38.4 1.0" 0.75" 24.2 0.75" 16.2 100.0 0.375" 24.5 #4 45.6 #10 #10 65.0 #20 #40 105.1 #60 #100 176.7 #200 #20 #40 105.1 #60 #100 176.7 #200 196.6 PAN 254.3 254.3	0.0 12.0" 16.2 0.00 12.3 3.0" 16.2 0.00 12.3 8.1 1.5" 16.2 0.00 16.8 38.4 2.0"	0.0 12.0° 16.2 0.00 0.00 12.3 3.0° 16.2 0.00 0.00 12.3 1.5° 16.2 0.00 0.00 16.8 2.0° - - - 16.8 1.5° 16.2 0.00 0.00 10.0 0.5° 16.2 0.00 0.00 0.375° 16.2 0.00 0.00 0.375° 16.2 0.00 0.00 0.375° 16.2 0.00 0.00 0.375° 24.5 8.30 3.49 440 45.6 29.40 12.35 #40 105.1 88.90 37.34 #40 105.1 88.90 37.34 #40 105.1 88.90 37.34 #40 105.1 88.90 37.41 #100 176.7 160.50 67.41 #200 PAN 254.3 238.10 100.00 Grain size in millimeters Ity SAND with trace gravel SM	0.0 0.0 12.0° 16.2 0.00 0.00 100.00 12.3 8.1 2.0°

